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It is shown that under extract ion conditions there  exists an optimal s ize  of a gap for which the 
column productivity is the highest.  

It is known that in an ideal cascade [1] the lowest energy consumption can be obtained for the separat ion 
process  of a binary mixture .  In such a cascade the dimensionless extraction value is one half of the maxi-  
mally possible,  the latter being given by 

c i (1 ~ c~) 
z , (I) 

c~-- c~ 

and the specific heat consumption per unit of the enriched product when a constant concentrat ion is maintained 
at one end of the cascade is equal to the original one [2, 3]: 

id 40 )~ T~ 
Qsp = -7---" o~pD " A-T V (Ce, Co). (2) 

Prac t ica l  implementat ion of an ideal caseade profile is not possible; it can be approximated,  however, by a 
s tepwise cascade with lower energy efficiency. 

It is shown below that in some cases for a specified choice of geomet r ic  charac te r i s t i cs  a n d o f  opera t -  
ing state pa ramete r s  of a column of constant cross  sect ion its energetics efficiency may not be smal le r  than 
that  of a stepwise cascade.  

To this end we shall  consider  the case which is of interest  in pract ice  of removing a smal l  amount of 
admixture f rom the main substance with the initial concentrat ion Co, that is, the case of 1 --  c << 1. 

Then in accordance  with [4] the separa t ion degree is related to the parameters  ~t and Ye by the relat ion 

q(1 - - z )  + z = e y e ( 1 - x ) .  (3) 

The optimization problem consists in finding for given separat ion degree  and t empera tu re  states of the 
column operation those geometr ic  charac te r i s t i cs  for which its per formance  will be the highest possible.  

The quantities Ye and ~ which appear  in (3) a re  functions of the gap between the hot and the cold s u r -  
faces of the column, that is, 

y ~ =  6~ , z =  H*63 (4) 

In aeeordance  with what was stated above, the extraction magnitude is also regarded by us as a function 
of the gap, that is,  ~ = a(6). 

By differentiating (3) with respee t  to 5 and setting da/d5 = 0, the following expression for the optimal 
pa ramete r  is obtained- 

g _ 3• 1) 
e.opt-- (7• 4) [~opt-k q (1 - -  ~opt)] (5) 

If one i n s e r t s  (5) into (3), one obtains the following t ranscendental  equation for the optimal value of ~ : 
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TABLE 1. Optimal  Values of Dimens ion less  Lengths and Extract ions  
Depending on Separa t ion  Deg ree  in Accordance  with (5) and (6) 

q 1,5 5 10 20 50 I00 150 

2,287 0,8950 I 0,7704 0,7085 0,6655 0,64663 I 0,6385 ~opt 
q 

Ye, opt 0.804 3,37 4,88 6,39 8,54 �9 10,13 11,08 

q(1 - -  Xgpt) + ~opt = exp { 3• - -  ~opt) (q--  1) 
(7• [~,opt-~- q(1 --~opt)] } " 

(6) 

It can be s een  f r o m  the fo rmulas  (5) and (6) that  the opt imal  values of Ye and ~ only depend on the s e p a r -  
ation deg ree .  Corresponding numer i ca l  values a r e  shown in Tab le  1. 

By using (4) one can de t e rmine  for  specif ied column length and t e m p e r a t u r e  s ta tes  the opt imal  gap m a g -  
nitud e: 

( Y :  / 114 
6opt = ye, op--~ ] ' (7) 

where  Ye,opt is given by (5). 

The quantity y~ is not comple te ly  a r b i t r a r y ,  s ince  it is re la ted  to the cons t ra in ts  imposed by the hydro-  
dynamic  conditions in the column as well  as by the sepa ra t ion  conditions of the mix ture  components .  

F r o m  the la t ter  point of view and with a fixed length and specif ied sepa ra t ion  deg ree  the max imal  gap 
co r re sponds  to no ex t rac t ion  f rom the column (~ = 0); th is ,  according  to (3), yields Ye = In q, and in view of 
the f i r s t  r e la t ion  of (4) de te rmines  an upper  bound for the values of Ye* by means  of the inequality 

* 4 ge ~ 6max In q. (8) 

On the other hand, the condition of hydrodynamic s tabi l i ty  according  to  which the velocity profi le  c o r r e s p o n d -  
ing to a cubic parabola  is maintained along the ent i re  height of the sepa ra t ion  ape r tu r e  demands that the Ray-  
leigh number  be within the l imits  103-10 ~ as shown exper imenta l ly  in [5]. For  the sake  of re l iabi l i ty  let us se t  

Ra--7- gpf3(AT) 6~ ~ 103. (9) 

Since 5max -< 6 , ,  f r om (8) one obtains by employing (9) 
4 

.( gg~-~)a~l ,-To lnq, (10) y ~ l O  4 

and hence the m a x i m u m  feas ib le  height of the column can be obtained: 

( ,-I " '  ' '~(  a ,~I~ ,~ 
tmax<2O k Pg~-)  t ~ - )  ~O lnq, (11) 

for  which the requi red  hydrodynamic  conditions a r e  maintained.  
, 

It  may tu rn  out that the p a r a m e t e r  Ye se lec ted  in accordance  with (10) is such that  6opt as given by (7) 
will be too smal l ,  that  is ,  it could not be technical ly  r ea l i zab le .  It is then advisable  to subdivide the ent i re  
column into n equal s tages  which a r e  joined together  by the rmos iphon  loops. 

Fo r  each of these  n s tages  the opt imal  value of Ye is the .n- th  par t  of Ye,opt as given by (5); (7) is now 
rep laced  by 

6opt = ( ny_~_~ )I14. (12) 
Ye,opt 

If the column p e r f o r m a n c e  is given, then the second re la t ion  of (4) enables one to de t e rmine  

H* = aopt (13) 
Zopt 63opt ' 

915 



.[~7 

I 

! 

2 

, 

o / 2 

i}: 
O '  " �9 

Fig.  1 

~o 

o,8 

@o 
4 ! 
2 ~ lnq 
Fig.  2. 

Fig.  1. Column productivi ty ve r sus  s lot  s i ze  6: H* = 2 . 1 0  4 kg/  
m 3"sec ,  y~ = 2 . 1 0  - i4m4:  1) q = 5 ,  2) 10; H* = 2 . 1 0  s k g / m  3 . s e c ,  

* .10-14 m4: Ye = 6 3) 50; 4) 100; 5) 150; cr.107 k g . s e e - t ;  6 . l i f  t, 
m .  

Fig.  20 Relat ive  eff iciency of an optimized thermodif fus ion  column 
of constant  s e c t i o n  compared  with an ideal cascade  ve r su s  s e p a r a -  
t ion degree :  1) l - - c < <  1; 2) e<< 1 (the values of l n q a r e s h o w n  
on the a b s c i s s a  axis) .  

and, consequently,  the requi red  width of the separa t ing  a p e r t u r e  B.  If, on the other hand, the quantity H* is 
specif ied,  then  (13) can be used to find the max imal  column p e r f o r m a n c e .  In Fig.  1 the computat ion resu l t s  
a r e  shown by employing the above formulas  for var ious  values of H* and y ~ .  It can be s een  f rom the d i ag ram 
that  in the reg ion  of 5 > 6op t the column p e r f o r m a n c e  worsens  rapidly  for  wider  gaps and that  this region 

s h o u l d  be r ega rded  as the instabi l i ty reg ion  for  the column operat ion,  s ince  sma l l  swings in the value of H* 
due to var ia t ions  of AT caused by the instabi l i ty  of hea t -exchange  conditions on the the rmos ta t i ca l ly  controlled 
column su r faces  can have a cons iderab le  effect on the amount of ext rac t ion  or,  with the la t ter  remain ing  con-  
s t an t ,  on the a t ta inable  sepa ra t ion  deg ree .  

It can a l so  be s een  f rom the d i a g r a m  that  for  lower degrees  of s epa ra t i on  the max ima  of the curves  be -  
come  m o r e  flat  and t he r e  is less  need to  obse rve  s t r i c t ly  the nominal  value of the opt imal  gap.  

A compar i son  is now ca r r i ed  out of the energet ic  eff iciency of the optimized thermedi f fus ion  column of 
constant sec t ion  and the ideal  cascade ,  both with the s a m e  gap values and wi th the  s amewid th  of the separa t ing  
a p e r t u r e  in the null sec t ion  of the  ideal  cascade  and in the optimized column.  

The heat consumption in the column is given by 

Q = F AT. (14) 
6 opt 

The su r f ace  a r e a  of the column is F = BL and its height can be expres sed  as L = Ye,optKopt/Hopt,  which 
r ep l aces  (14) by 

/(optB ~ AT. Q ~ Ye, opt - -  
Hopt ~opt 

Dividing both s ides of the above express ion  by ff and using the second re la t ion  of (4), one obtains an express ion  
for the spec i f ic  heat consumption in the optimized thermodif fus ion  column of constant sect ion,  namely ,  

Q~p = y~,opt__ . KoptB ~ AT. (15) 
x opt H2opt 6opt 

By replac ing  Ye,opt by its value in (5) and Kopt and Hopt by the i r  r e s p e e t i v e  express ions  (see "Notation"),  one 
finally obtains 
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30 ( q -  1) ~ "~ 
QsP = - T  (7• o p t -  4) [• + q (1 - %p0] r AT (16) 

The  value  funct ion which a p p e a r s  in (2) is g iven  by 

V (ee, Co) = (ce - -  co) (I - -  2Co) ( 1 --2Ce) In q (16a) 
Co (1 - -  Co) 

which in the c a s e  under  c o n s i d e r a t i o n  (1 - -  e << 1) b e c o m e s  

1 (17)  V (ce, Co) ----- In q + 1. q 

By r ep l ac ing  V(ce,  e 0) in (2) in a c c o r d a n c e  with (17) and dividing by (16), one obtains 

O~ 4 qlnq--q + 1 
~0 = Qsp "~--3- " q(q-- 1) (7Zopt--4)[• + q ( 1  --Zopt)]. (18) 

It can  be s e e n  that  the  ra t io  which is of i n t e re s t  to  us is a funct ion of the  s e p a r a t i o n  d e g r e e  only.  The  func-  
t ion  is shown in F ig .  2; it shows that  ~ app roaches  unity if the  s e p a r a t i o n  d e g r e e  i n c r e a s e s ,  tha t  is ,  t he  eff i-  
c iency  of the  opt imized co lumn of cons tant  s ec t i on  d i f fe rs  only s l igh t ly  f r o m  that  of an  ideal  c a s c a d e  and is 
not i n fe r io r  to  tha t  of a s t epwi se  c a s c a d e .  

This  r e su l t ,  which is e x p r e s s e d  by the  fo rmu la  (18), is not,  however ,  g e n e r a l ;  that  is ,  it cannot  be 
extended to  any concen t r a t ions  of the  or ig ina l  m i x t u r e .  

If  the  second  l imi t ing c a s e  is c ons i de r e d ,  namely ,  that  of low concen t r a t i on  of the  end component ,  tha t  
is ,  c << 1, then  in a c c o r d a n c e  with [4] ins tead of (3) one has 

1 (1 + z )  - -  • = e - r e ( l + •  . ( 1 9 )  
q 

By r epea t ing  our  p rev ious  c o n s i d e r a t i o n s ,  ins tead of the  f o r m u l a s  (5), (6), and (18), we obtain,  r e s p e c t i v e l y ,  

3• ( q -  1) (20) Ye, opt= " 
(7• t + 4) [ 1 - -  • (q - -  1)] 

1----(1 +•215 3•215 } (21) 
q (7• opt+ 4) [ 1 - -  hop r (q - -  1)l ' 

q~ =--3-4 q--q__ll - -  lnq (7• opt + 4) [1--• ( q - -  1)]. (22) 

The  r e l a t i o n  (22) is a l so  shown in F ig .  2; it shows an i n c r e a s e  in the  ef f ic iency of the opt imized co lumn with 
the  s e p a r a t i o n  d e g r e e  d e c r e a s i n g ,  tha t  is ,  the least  i n t e re s t ing  c a s e  in p r a c t i c e .  

It has been  shown by us that  if t h e r m o d i f f u s i o n  is used for  m a t t e r  r e m o v a l ,  t h e r e  is no need to  apply a 
s t e p w i s e  c a s c a d e  of va r i ab l e  prof i le ,  s i nce  the  opt imized co lumn  of cons tant  s ec t i on  proves  ene rge t i ca l ly  
equivalent  to  i t .  

N e v e r t h e l e s s ,  it should be ment ioned h e r e  tha t  this  conc lus ion  is valid if the  du ra t ion  of the  t r a n s i e n t  
p r o c e s s  is b r i e f  f r o m  the  point of view of economica l  eng ineer ing  ind ices .  

The  above  cons ide ra t i ons  a r e  valid for  an  ideal  t h e r m o d i f f u s i o n  column,  tha t  i s ,  for  a co lumn such  that  
both t h e r m o s t a t i c a l l y  con t ro l led  s u r f a c e s  a r e  ideal ly  i s o t h e r m i c .  In a r e a l  co lumn  t h e r e  is a lways  t e m p e r a -  
l u r e  a s y m m e t r y  which r e su l t s  in a p a r a s i t i c  convec t ion  whose  ex i s tence  even under  no ex t r ac t ion  condit ions of 
the  co lumn shims the  op t imal  value  of the  opera t ing  gap to  h igher  values  [8]. T h e r e f o r e ,  the  r e su l t s  as  g iven  
by the  f o r m u l a  (5) a r e  u n d e r e s t i m a t e s  and should be improved .by  taking into account  the  effect  of p a r a s i t i c  
convec t ion ;  the  la t te r  should be inves t igated  f u r t h e r .  

In conc lus ion ,  it is noted that  op t imiza t ion  of a t he rmod i f fu s ion  co lumn was a l so  cons ide red  in [6, 7] 
t hough  f r o m  a d i f fe ren t  point of v iew.  In  [6] it was shown that  t h e r e  is an  opt imal  flow r a t e  of heat so  that  the  
s e p a r a t i o n  d e g r e e  is the  h ighes t  poss ib le ;  this  r e s u l t  was obtained by taking into account  that  the  coeff ic ients  
in the  t r a n s f e r  equat ion depend on the  amount  of ex t rac t ion .  This  dependence  is v e r y  weak,  however ,  and is 
usua l ly  ignored;  thus ,  the  conc ins ions  of [6] a r e  of no p r a c t i c a l  va lue ,  

As r e g a r d s  [7], the  s lope  angle  is opt imized of a flat t h e r m o d i f f u s i o n  co lumn which ensu re s  the  highest  
s epa ra t i0n  d e g r e e .  
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NOTATION 

c, concentrat ion;  h, D, 7, ~, coefficients of t he rma l  conductivity,  diffusion, dynamic viscosi ty ,  and 
volume expansion; p, density;  ~, thermodiffus ion constant; T, mean t e m p e r a t u r e  in operat ional  gap; AT, 
t em pe r a tu r e  difference;  ~ = ~/H; or, column pe r fo rmance  {extraction); V(ce, co), value function, see (16 a); q = Ce (1 - 
c 0 ) / c 0 ( 1 -  Ce); H =o~gp2f163(AT)2B/6h?T, H*, see  (4); Ye = 504~DL/pgfl54~-,  Y~, see  (4); 5, gap; L, 
column length; a ,  t he rma l  diffusivity. Indices: 0, initial state; e, value n ea r  the refining end of column. 
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DYNAMICS OF PARTICLES IN A SPIRAL FLOW 

V. I. Korobko, V. F. Grekov, 
and V. K. Shashmin 

UDC 532.529 

Dynamic charac te r i s t i c s  have been der ived for par t ic les  falling under gravi ty  in a sp i ra l  heat-  
c a r r i e r  flow. 

Many theore t ica l  studies have been made on the motion of smal l  par t ic les  in turbulent  flows, of which 
Chen's papers [1 ] form an important  par t .  

Here  we use Chen's equations [1] to de te rmine  the dynamic cha rac te r i s t i c s  of a par t ic le  falling under 
gravi ty  in a sp i ra l  flow within a rotat ing drying drum.  The calculations a r e  compared with exper iment  for 
par t ic les  falling in a homogeneous flow. 

The equation of motion for a smal l  spher ica l  par t ic le  falling under gravi ty  in a turbulent  sp i ra l  gas flow 
within a rotating cyl indr ical  drying d rum takes the fo rm  

n d S p ~ =  ~ d 3 p ~ +  c= ~d ~ 

Equation (1) is derived from Chen's equation [I] by neglecting forces related to the acceleration of the 
fluid, as well as those due to the adjoint mass and the Basset force, which incorporates the history of the 
particle acceleration; this is done because these forces are small if the fluid is of low speed (3-7 m/see) and 
the circumferential velocity is small (v~p = 1 m/sec)~ Also, an assumption different from Chen's is that the 
viscous resistance is proportional to the square of the relative velocity v~1 --~) [2], with this force directed 
against the flow direction if the particle moves faster than the liquid, and vice versa. 

We solve (1) for w on the basis that Ox = 0.5 [2], which gives 

~v : g  ~ 3 pl l ~ _ _ ~ ! ( ~ _ _ ~ .  (2) 
8 p d 
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